Source code for meanfi.model
import numpy as np
from meanfi.mf import (
density_matrix,
meanfield,
)
from meanfi.tb.tb import add_tb, _tb_type
def _check_hermiticity(h):
for vector in h.keys():
op_vector = tuple(-1 * np.array(vector))
op_vector = tuple(-1 * np.array(vector))
if not np.allclose(h[vector], h[op_vector].conj().T):
raise ValueError("Tight-binding dictionary must be hermitian.")
def _tb_type_check(tb):
for count, key in enumerate(tb):
if not isinstance(tb[key], np.ndarray):
raise ValueError(
"Values of the tight-binding dictionary must be numpy arrays"
)
shape = tb[key].shape
if count == 0:
size = shape[0]
if not len(shape) == 2:
raise ValueError(
"Values of the tight-binding dictionary must be square matrices"
)
if not size == shape[0]:
raise ValueError(
"Values of the tight-binding dictionary must have consistent shape"
)
[docs]
class Model:
"""
Data class which defines the interacting tight-binding problem.
Parameters
----------
h_0 :
Non-interacting hermitian Hamiltonian tight-binding dictionary.
h_int :
Interaction hermitian Hamiltonian tight-binding dictionary.
filling :
Number of particles in a unit cell.
Used to determine the Fermi level.
Notes
-----
The interaction h_int must be of density-density type.
For example, h_int[(1,)][i, j] = V means a repulsive interaction
of strength V between two particles with internal degrees of freedom i and j
separated by 1 lattice vector.
"""
def __init__(self, h_0: _tb_type, h_int: _tb_type, filling: float) -> None:
_tb_type_check(h_0)
self.h_0 = h_0
_tb_type_check(h_int)
self.h_int = h_int
if not isinstance(filling, (float, int)):
raise ValueError("Filling must be a float or an integer")
if not filling > 0:
raise ValueError("Filling must be a positive value")
self.filling = filling
_first_key = list(h_0)[0]
self._ndim = len(_first_key)
self._ndof = h_0[_first_key].shape[0]
self._local_key = tuple(np.zeros((self._ndim,), dtype=int))
_check_hermiticity(h_0)
_check_hermiticity(h_int)
[docs]
def density_matrix(self, rho: _tb_type, nk: int = 20) -> _tb_type:
"""Computes the density matrix from a given initial density matrix.
Parameters
----------
rho :
Initial density matrix tight-binding dictionary.
nk :
Number of k-points in a grid to sample the Brillouin zone along each dimension.
If the system is 0-dimensional (finite), this parameter is ignored.
Returns
-------
:
Density matrix tight-binding dictionary.
"""
mf = meanfield(rho, self.h_int)
return density_matrix(add_tb(self.h_0, mf), self.filling, nk)[0]
[docs]
def mfield(self, mf: _tb_type, nk: int = 20) -> _tb_type:
"""Computes a new mean-field correction from a given one.
Parameters
----------
mf :
Initial mean-field correction tight-binding dictionary.
nk :
Number of k-points in a grid to sample the Brillouin zone along each dimension.
If the system is 0-dimensional (finite), this parameter is ignored.
Returns
-------
:
new mean-field correction tight-binding dictionary.
"""
rho, fermi_energy = density_matrix(add_tb(self.h_0, mf), self.filling, nk)
return add_tb(
meanfield(rho, self.h_int),
{self._local_key: -fermi_energy * np.eye(self._ndof)},
)